
CarnegieMellon
___ Software Engineering InStitute

The Impact of Function

Extraction Technology
on Next-Generation

Software Engineering

Alan R. Hevner, Software Engineering
Institute and University of South Florida

Richard C. Linger, Software Engineering
Institute

Rosann W. Collins, University of South
Florida

Mark G Pleszkoch, Software Engineering
Institute

Stacy J. Prowell, Software Engineering
Institute

Gwendolyn H. Walton, Software Engineering
Institute

July 2005

DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

TECHNICAL REPORT
CMU/SEI-2005-TR-01 5
ESC-TR-2005-015

II • A

CarnegieMellon
SSoftware Engineering Institute
Pittsburgh, PA 15213-3890

The Impact of Function Extraction

Technology on Next-Generation

Software Engineering

CMU/SEI-2005-TR-01 5
ESC-TR-2005-015

Alan R. Hevner, Software Engineering Institute and
University of South Florida

Richard C. Linger, Software Engineering Institute
Rosann W. Collins, University of South Florida
Mark G. Pleszkoch, Software Engineering Institute

Stacy J. Prowell, Software Engineering Institute
Gwendolyn H. Walton, Software Engineering Institute

July 2005

Networked Systems Survivability Program

Unlimited distribution subject to the copyright.

20051223 033

This report was prepared for the

SEI Administrative Agent

ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED

FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external

and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development

center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the

copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Acknowledgments .. ix

Executive Summary ... xi

Abstract ... xiii

Next-Generation Software Engineering ... 1
1.1 A History Lesson in Complexity ... 1

1.2 A New Science for Computational Software Engineering 2

1.3 Understanding Software Behavior with Function Extraction 2

2 Function Extraction Theory and Technology .. 5
2.1 The Idea of Function Extraction ... 5

2.2 Fundamentals of Program Behavior Calculation 6
2.3 A Function Extraction Example ... 8

2.4 Automating Function Extraction ... 9

2.5 Function Extraction and Correctness Verification 12

3 FX Impacts .. 15
3.1 FX Impacts on Software Development Life-Cycle Activities 15

3.1.1 System Specification .. 15
3.1.2 System Architecture ... 16
3.1.3 Component Design ... 16
3.1.4 Component Evaluation and Selection 17
3.1.5 Component Implementation .. 18
3.1.6 Component Correctness Verification 18
3.1.7 System Integration... 19
3.1.8 System Testing 19
3.1.9 System Maintenance and Evolution ... 20

3.2 FX Impacts on Programming Language Environments 21
3.2.1 Assembler Languages .. 21
3.2.2 Imperative Languages: COBOL and C 21
3.2.3 Object-Oriented Languages: C++ and Java 21
3.2.4 Rapid Development Languages: Visual Basic 22

3.3 FX Impact on Software Engineering Issues ... 22

CMU/SEI-2005-TR-015

3.3.1 Component-Based Development .. 22
3.3.2 Reengineering of Legacy Systems ... 22

3.3.3 Quality Assurance of Software ... 22

3.3.4 Component Reuse ... 23
3.3.5 Automated CASE Tools .. 23

3.3.6 Web Services .. 23
3.3.7 Agile Methods of Software Development 24
3.3.8 Distributed Computing ... 24
3.3.9 System Documentation .. 24

3.4 FX Impacts on the Software Engineering Field 24
3.4.1 Software Engineering Education 24

3.4.2 Software System Acquisition .. 25

3.4.3 Management of Software Development 25

3.4.4 Software Development Teams ... 25
3.4.5 Software Development Organization 25

3.4.6 Software Development Industry .. 26
3.4.7 Software Engineering Workforce ... 26

3.4.8 Software Engineering Economics ... 26

4 The FX Research Study .. 27
4.1 Research Questions .. 29

4.2 Study Design .. 29

4.3 Study Results ... 31
4.3.1 Demographic Data ... 31

4.3.2 Existing Software Development Environment: Research Questions
1-3 3 1

4.3.3 The Potential of FX Technology: Research Questions 4-6 33

5 Recommendations of the FX Study .. 39
5.1 Goal 1: Complete Development of the FX Prototype for Assembler

Language Programs .. 39

5.2 Goal 2: Create FX Automation for Correctness Verification of Programs. 39

5.3 Goal 3: Create FX Automation for High-Level Programming Environments
Starting with Java ... 39

5.4 Goal 4: Perform Research on Semantics of System Specification and
Architecture for FX Automation .. 40

5.5 Goal 5: Perform Research on Human/Computer Interfaces for FX
Automation .. 40

5.6 Goal 6: Perform Experimentation with FX Technology to Evaluate Its
Im pact 40

5.7 Goal 7: Perform Research on the Semantics of Software Quality Attributes
for FX Automation .. 41

SCMU/SEI-2005-TR-01 5

6 Conclusions ... 43

Appendix Function Extraction Technology Impacts Questionnaire 45

References .. 55

CMU/SEI-2005-TR-015 iii

iv CMU/SEI-2005-TR-O1 5

List of Figures

Figure 1: The Basic Concept of Function Extraction ... 6

Figure 2: A Function Extraction Example .. 9

Figure 3: Function Extractor Architecture .. 10

Figure 4: An Example Java Program .. 11

Figure 5: The Behavior Catalog of the Example Program 12

Figure 6: Correctness Verification Through Function Extraction 13

Figure 7: FX Use for System Specification .. 16

Figure 8: FX Use for System Architecture .. 16

Figure 9: FX Use for Component Design .. 17

Figure 10: FX Use for Component Evaluation and Selection 18

Figure 11: FX Adaptation for Correctness Verification 19

Figure 12: FX Use for System Integration .. 19

Figure 13: FX Use in System Maintenance and Evolution 20

Figure 14: FX Impacts on Software Development Activities (Data from Table 6) 34

CMU/SEI-2005-TR-015

vi CMU/SEI-2005-TR-O1 5

List of Tables

Table 1: Creation and Loss of Semantic Information in Software Development 5

Table 2: FX Impacts - W here to Next? .. 28

Table 3: Questionnaire Items and Types ... 30

Table 4: Current Program Understanding Techniques 31

Table 5: Percentage of Developer Time Spent Understanding Behaviors 32

Table 6: FX Impacts on System Development Activities 33

Table 7: Programming Language Environments for FX Application 35

Table 8: Impact of FX Technology on Software Engineering Technologies 35

Table 9: Impact of FX Technology on Software Engineering Issues 36

CMU/SEI-2005-TR-015 vii

viii CMU/SEI-2005-TR-O1 5

Acknowledgments

We gratefully acknowledge the contributions of Casey K. Fung to this report. We also appre-
ciate the support for this study provided by the Software Engineering Institute (SEI) Inde-
pendent Research and Development (IRAD) program.

CMU/SEI-2005-TR-015 ix

x ~CMU/SEI-2005-TR-O1 5

Executive Summary

The task of understanding program behavior today is an error-prone, resource-intensive proc-

ess carried out in human time scale, primarily through program reading and analysis. Yet fast

and precise understanding of program behavior is essential, not only for discovering errors
and vulnerabilities, but also for improving software specification, architecture, design, im-
plementation, and maintenance artifacts and the development processes that produce them.
Large and complex software systems are hard to understand because they contain an im-
mense number of execution paths, any of which may contain errors or security exposures.
Faced with massive sets of executions, developers often achieve no more than a general un-
derstanding of specified and unspecified (malicious or simply unintended) system behaviors.

This technology gap in program understanding lies at the heart of many persistent problems
in software and systems engineering, and it is a major cause of security exposures and fail-
ures.

Although this situation has seemed inevitable in the past, it should not be so in the future.
Function-theoretic mathematical foundations of software illuminate a challenging but feasible
strategy to develop automated tools to address the problem of understanding program behav-
ior. The objective of this Function Extraction (FX) technology is to help move from an uncer-
tain understanding of program behavior derived in human time scale (days) to a precise un-
derstanding automatically computed in computer time scale (seconds).

The SEI CERT® organization is conducting fundamental research and development on FX

technology. The first FX application is the development of the Function Extraction for Mali-
cious Code (FX/MC) system. FX/MC will compute the behavior of malicious code expressed
in Assembler Language to permit analysts to develop effective countermeasures. FX technol-
ogy, however, can be applied to virtually any language environment, and it has the potential
to impact many aspects of the software development life cycle as well as the entire field of
software engineering. The goal of this study is to understand these impacts and chart a course
for maximizing the value of FX technology for SEI sponsors.

This report summarizes FX research and development and investigates the impact of FX on
software engineering. Data collected from active software professionals through a survey in-
strument provided objective and informed guidance on high-leverage paths for future FX ini-
tiatives. The report concludes with seven key survey findings for the future direction of FX
research and development:

® CERT is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

CMU/SEI-2005-TR-015 xi

1. Complete development of the FX prototype for Assembler Language programs.

2. Create FX automation for correctness verification of programs.

3. Create FX automation for high-level programming environments starting with Java.

4. Perform research on semantics of software specification and architecture for FX automa-

tion.

5. Perform research on human/computer interfaces for FX automation.

6. Perform experimentation with FX technology to evaluate its impact.

7. Perform research on the semantics of software quality attributes for FX automation.

xii CMU/SEI-2005-TR-01 5

Abstract

Currently, software engineers lack practical means to determine the full functional behavior
of complex programs. This gap in intellectual control is the source of many long-standing and
intractable problems in security, software, and systems engineering. Function Extraction (FX)
technology is directed to automated computation of full program behavior. FX is based on
function-theoretic mathematical foundations of software that illuminate algorithmic methods
for behavior computation. FX holds promise to replace resource-intensive, error-prone analy-
sis of program behavior in human time scale with fast and correct analysis in computer time
scale. The CERT® organization of the Software Engineering Institute is conducting research
and development in FX technology and is developing a Function Extraction for Malicious
Code system to rapidly determine the behavior of malicious code expressed in Assembler
Language. FX technology has the potential for transformational impact across the software
engineering life cycle, from specification and design to implementation, testing, and evolu-
tion. This study investigates these impacts and, based on a survey of software professionals,
defines a strategy for FX evolution that addresses high-leverage opportunities first. FX is an
initial step in developing next-generation software engineering as a computational discipline.

CMU/SEI-2005-TR-015 xiii

AiV CMU/SEI-2005-TR-Q1 5

1.2 A New Science for Computational Software
Engineering

The future of software system development faces two seemingly intractable problems: com-
plexity and cost. Complexity is an ever-present barrier in system development and evolution.
Its principal manifestation is the massive accumulation of low-level details and the intricate
relationships among them that quickly exceed human understanding. No other engineering
discipline requires its practitioners to remember and reason about so many details. As noted,
developers today have no effective means to determine the full functional and non-functional
behavior of programs written by themselves or others. Furthermore, no testing process, no
matter how thorough, can validate the full behavior of programs in all circumstances of use.
The inevitable result is that software systems are often fielded with unforeseen errors and
vulnerabilities that no amount of trying harder can prevent. The problem of cost is closely
related to complexity. Battalions of developers and programmers require a great deal of time.
to develop today's large software systems because individuals are complexity-limited in pre-
sent technologies and coordination-limited in present organizations.

Evidence suggests that software engineering is reaching the limits of technologies developed
in the first 50 years of computing. New technologies are required for the next 50 years that
will enable more efficient and effective development of software systems than is possible
with current-generation technologies. Manual methods of software engineering must be re-
placed by computational automation that will transform software engineering into a true
computational engineering discipline. Other engineering disciplines have made this transfor-
mation to their everlasting benefit. Computational models of subject matter dominate mature
engineering disciplines, such as electrical and aeronautical engineering. Analogous computa-
tional models for software system analysis and development are now emerging. While much
of the focus of the first 50 years of computing was on correct syntax-directed computation of
details for computer execution, the focus of the next 50 years can shift to semantics-directed
computation of correct abstractions for human understanding and manipulation. An opportu-
nity exists for a research and development program to exploit a new generation of scale-free
computational models for fast and reliable manipulation of software artifacts, based not only
on processing their syntactic expressions but also on processing their semantic meanings.

1.3 Understanding Software Behavior with Function
Extraction

A necessary first step in building a foundation for next-generation software engineering is to
investigate the theory and technology for understanding program behavior. Full knowledge of
software behavior is essential for fast development of correct programs. Lacking better tech-
nology, behavior discovery today is a haphazard and imprecise drain on resources carried out
by program reading and analysis with inevitable human fallibility. We believe that a key ena-
bling capability for next-generation software engineering is the transformation of program
behavior discovery into a precise, automated calculation. An emerging technology termed

2 CMU/SEI-2005-TR-015

1 Next-Generation Software Engineering

Traditional engineering disciplines depend on rigorous methods to evaluate the expressions
(equations, for example) that represent and manipulate their subject matter. Yet current-

generation software engineering has no practical means to fully evaluate the expressions it
produces. In this case, the expressions are computer programs, and evaluation means under-

standing their full behavior, right or wrong, intended or malicious. Short of unlimited re-

sources, no programmer or analyst can say for sure what the behavior of a sizable program is

in all circumstances of use. This sobering reality lies at the heart of many problems in soft-
ware. The result of this technology gap is deployment of systems containing unknown errors,

vulnerabilities, and malicious code. Systems at the heart of the nation's infrastructure and

defense are especially vulnerable. The risks are substantial for acquisition organizations that
lack means to validate the full behavior of delivered systems, and offshore development of

software further compounds the problem for homeland security. Even when software systems
are developed onshore, they remain dependent on system and application libraries that have

often been developed offshore.

1.1 A History Lesson in Complexity
When the Normans conquered England in the 11th century, a census was ordered to catalog
what had been won. But after the data were collected, no one was able to produce the re-
quired sums despite the obvious interest in the results. The census had been recorded in Ro-

man numerals and no one knew how to add up so many numbers in that notational system.
No amount of trying harder and being careful would suffice; the best minds of the day were

overwhelmed by the complexity of the task. Yet if the census had been recorded in decimal
arithmetic and place notation, a few school children could have produced the required sums

in short order.

There is a lesson here for the problems of present-day software engineering; technology can
either add complexity to block human capabilities or avoid complexity to augment human

capabilities for achieving extraordinary results. In this case, Roman arithmetic adds complex-
ity because it does not scale to large problems. Decimal arithmetic avoids complexity be-

cause it is scale-free; large problems simply require more of the same operations used to
solve small problems. And the correctness of the operations themselves, whatever human fal-

libility may be present in their application, is guaranteed by the theoretical foundations of

arithmetic.

CMU/SEI-2005-TR-015 1

Function Extraction (FX) holds promise to make this next-generation capability a reality. The
objective of FX technology is routine, automated calculation of the full functional behavior
of programs. The semantics of program behavior revealed by FX methods directly address
the Department of Defense (DoD) challenges of determining expected properties of software

systems before they are built and confirming their as-built properties, and dramatically de-
creasing the amount of effort required for implementing new software-intensive systems.

The SEI CERT organization is performing fundamental research and development on FX

theory and technology. An automated Function Extraction for Malicious Code (FX/MC) sys-
tem is being developed to compute the behavior of malicious code expressed in an Assembler

Language environment in order to develop effective countermeasures. FX technology, how-
ever, can be applied to virtually any language environment and has the potential to impact

many aspects of the software development life cycle as well as the entire field of software
engineering. This report summarizes ongoing research and development on FX technologies
and investigates the impact of FX on software development projects and the software engi-

neering profession. Survey data collected from active software professionals provides in-
formed guidance on high-leverage paths for future FX initiatives. Specific areas of funda-
mental research are highlighted as essential elements for FX evolution.

CMU/SEI-2005-TR-01 5 3

4 CMU/SEI-2005-TR-O1 5

2 Function Extraction Theory and
Technology

The study of Function Extraction at the SEI began in 2004 in the CERT organization, result-
ing in the publication of a paper detailing the technology and its potential [Pleszkoch 04] and
the development of a proof-of-concept prototype. This work led to sponsorship of a project to
develop the Function Extraction for Malicious Code (FX/MC) system, which is currently un-
derway.

2.1 The Idea of Function Extraction

Function Extraction deals with the semantics of software behavior. All levels of abstraction in
the development of software systems deal with behavioral semantics, from low-level machine
language operations to high-level system capabilities. As software systems are developed and
evolve over time, semantic content is continuously created, intentionally or unintentionally,
correct or incorrect. Effective development and evolution of a system depends on how well
its behavior is understood by its developers. The complexity and quantity of semantic infor-
mation can overwhelm developers, leading to loss of intellectual control. This loss of seman-
tic understanding occurs for many reasons at all levels of a system. Table 1 illustrates exam-
ples of the creation and inevitable loss of behavioral semantics information, from individual
chips to entire information systems.

Table 1: Creation and Loss of Semantic Information in Software Development

evel Creation and Loss of Semantic Knowledge

Processors 1. Creation: Engineers create the behavioral semantics of chip operations by combining
circuits.

Loss: errors and ambiguities in processor manuals

Creation: Designers create the behavioral semantics of language instructions by combining
Languages chip operations.

Loss: errors and ambiguities in language manuals; compilers define semantics

Components Creation: Programmers create the behavioral semantics of components by combining
language instructions.

Loss: full functional behavior of components not documented

Applications Creation: Programmers create the behavioral semantics of applications by combining
components.

Loss: "Bob knows the application, but he's retiring."

Creation: Engineers create the behavioral semantics of systems by combining applications.Systems
Loss: Systems 'go natural' from accumulated knowledge loss.

CMU/SEI-2005-TR-015 5

The ultimate goal of Function Extraction is to calculate full semantic behavior at all levels of

system abstraction, from specification to design to implementation. This goal can be achieved

by automating the computation and composition of behaviors in the languages employed to

express such artifacts. These languages, whatever their level of abstraction, embody defini-

tions of the behavioral semantics of their language structures and rules of structure combina-
tion. These semantics can be captured and employed for Function Extraction as shown in
Figure 1.

Start with a language Develop an artifact
(for secification, (secification, design,
design, programming, program, etc.) using
etc.) the language

Capture the functional
semantics of the
language structures eArtif
& combinations

Develop a Function
Extractor for the L...~. Function Extrco j) BhvrCalg
language semantics

Figure 1: The Basic Concept of Function Extraction

The Function Extraction process at any system level begins with a well-defined language
whose semantics can be captured in terms of the functions of language structures and the

rules that govern their combination. An automated Function Extractor can then be developed

for the language. Any system artifact written in that language can then be submitted to the
Function Extractor and a behavior catalog produced containing all the behavior defined by

the artifact.

The foundations of Function Extraction have been developed through a process of research

and development that will continue into the future. The following sections summarize this

research stream.

2.2 Fundamentals of Program Behavior Calculation

The function-theoretic model of software [Hausler 90, Hevner 02, Hoffman 01, Linger 79,
McCarthy 63, Mills 86, Mills 02, Pleszkoch 90, Prowell 99] treats programs as rules for

6 CMU/SEI-2005-TR-01 5

mathematical functions or relations. The purpose of automated behavior calculation is to ex-
tract the full functional behavior of programs, that is, how programs transform inputs into
outputs in every circumstance and present the behaviors to users as precise as-built specifica-
tions in procedure-free form for analysis. In today's technology, the totality of program be-
havior is difficult to understand because it is distributed across an enormous number of pos-
sible execution paths. Testing selects paths from this set and so cannot reveal full behavior.

The fundamental insight in Function Extraction technology is the realization that, while siz-
able programs contain a virtually infinite number of execution paths, they are constructed of a
finite number of nested and sequenced control structures, each of which makes a finite con-
tribution to overall behavior. These structures correspond to mathematical functions or rela-
tions, that is, mappings from inputs to outputs. The functional mappings can be automatically
extracted in a stepwise process that traverses the finite control structure hierarchy. At each
step, details of local code and data are abstracted out, while their net effects are preserved and
propagated in the extracted behavior. While no general theory for loop abstraction can exist,
use of recursive expressions and patterns for loops provides an engineering solution. The
mathematical foundations for function-theoretic behavior calculation are currently being ap-
plied to the specialized problem malicious code analysis in the Function Extraction for Mali-
cious Code project. An opportunity now exists to explore the full effect that this technology
can have on the broader software engineering life cycle.

In more detail, function-theoretic foundations prescribe procedure-free equations that repre-
sent net effects on data of common control structures and provide a starting point for behav-
ior extraction. These equations are expressed in terms of function composition, case analysis,
and, for iteration structures, a recursive expression based on an equivalence of iteration and
alternation structures. Representative equations are given below for control structures labeled
P, data operations g and h, predicate q, and program function f.

The program function of a sequence control structure (P: g; h) can be given by the following
equation:

f = [P] [g; h] = [h] o [g]

where square brackets denote the program function and "o" denotes the composition operator.
That is, the program function of a sequence can be calculated by ordinary function composi-
tion of its constituent parts.

The program function of an alternation control structure (P: if q then g else h endif) can be
given by the following equation:

f = [P] = [if q then g else h endif] = ([q] = true -- [g] I [q] = false -+ [h])

where I is the "or" symbol. That is, the program function is given by a case analysis of the
true and false branches, with the possibility of abstracting them to a single case.

CMU/SEI-2005-TR-015 7

The program function of a terminating iteration control structure (P: while q do g enddo) can
be expressed as

f = [P] = [while q do g enddo] = [if q then g; while q do g enddo endif] = [if q then g; f
endif]

and f must therefore satisfy

f = ([q] = true - [f] o [g] I [q]= false -* I)

Because no general theory for iteration abstraction can exist, engineering solutions must be
developed to recognize patterns of iteration behavior.

These equations define an algebra of functions that can be applied bottom up to the control
structure hierarchy of a program in a stepwise Function Extraction process. This process
propagates and preserves the net effect of control structures through successive levels of ab-

straction while leaving behind complexities of local computations and data not required for

expressing behavior at higher levels.

2.3 A Function Extraction Example
In notional illustration of the stepwise behavior extraction process, consider the miniature
program on the left in Figure 2 and the question of what it does. The program takes as input
and produces as output a queue of integers named Q, and it defines local queues of integers
named odds and evens and a local integer variable named'x (<> stands for not equal, I1 for

concatenation). The stepwise behavior calculation process is depicted in the series of displays
progressing to the right. The control structures of the program form a natural hierarchy with a
number of leaf nodes. To begin the stepwise extraction process, the lowest level, leaf-node
ifthenelse and sequence control structures are abstracted into behavior signatures expressed
as conditional assignments. Next, the three whiledo structures, now leaf nodes in the remain-
ing hierarchy, can likewise be abstracted to conditional rules and assignments. Finally, the
sequence of three behavior signatures can be composed into a single assignment expressing

the overall behavior signature of the program as shown on the right. This assignment defines
what the program does in functional terms. It is the as-built behavior specification-that is,
the calculated behavior--of the entire program.

8 CMU/SEI-2005-TR-015

PROC (0) PROC (Q) PROC (0)
WHILE 0 <> empty WHILE Q <> empty ----

DO Do
x:= end(Q) x:= end(Q)
IF odd(x) ----

THEN --- [Ix is odd -> odds := -. [0, odds, evens:=
end(odds):= x odds II x OR x is even empty, odds 11 odd

ELSE ->evens:= evens 11 x] numbers(Q). evens
end(evens):= X evennumbers(O)} PROC ()

.ENDIF ---- PR C Q
ENO EN.DO ------ [Q:= odd_numbers(Q)

ENDDO EDO..

WHILE odds<> empty WHILE odds<> empty II even-number(Q)}

DO DO ENDPROC
x:= end(odds) ----- [end(Q):= end(odds)] . [0, odds := Q II odds.
end(Q):= x .. I

" empty]

ENDDO ENDDO

WHILE evens<> empty WHILE evens<> empty --
DO DO

x:= end(evens) -. [end():= end(eves)] -- --- [Q, evens:= 0 I1 evens,
end(Q) := x endempty]

E N D D O
E N-D O __,

ENDPROC ENDPROC ENDPROC

Figure 2: A Function Extraction Example

This extraction process reveals that the program creates a new version of queue Q, now con-

taining its original odd numbers followed by its original even numbers. Note in this process

that intermediate control structures and data uses drop out to simplify scale-up by subsuming
their functional effects into higher level abstractions. The principal behavior calculation proc-

ess is function composition through value substitution, which by definition eliminates inter-

mediate expressions at successive levels of abstraction. As noted above, programs can exhibit
an enormous number of execution paths but are composed of a finite number of control struc-
tures, so the behavior calculation process is itself finite and guaranteed to terminate. Further-

more, behavior is recorded at each step, to produce functional documentation for human un-
derstanding at all levels.

This miniature example illustrates in informal terms a stepwise behavior extraction process
that is invariant with respect to scale-the same mathematics and operations are employed at
all levels of extraction, no matter the size of the program. Were this program embedded in a
larger system, the extracted behavior on the right side of the figure would participate in fur-

ther extraction, and not the program itself. In this way, local details are left behind at each
step with no loss of information, while precise abstractions propagate to higher levels. Ab-

straction does not mean vagueness; the extracted behavior embodies the precise net effect of

implementation details. This process, combined with other techniques, limits complexity in
behavior extraction of large programs.

2.4 Automating Function Extraction

The mathematical foundations of FX theory provide an opportunity for development of

automated tools to support human understanding of program behavior. Figure 3 depicts the
general architecture of an automated Function Extractor. Functional semantics are defined for

the control and data structures of the target language and their rules of combination, as well
as for the forms of the behavior expressions that will represent the extracted behavior. These

CMU/SEI-2005-TR-015 9

semantics are stored in data repositories and employed to verify the correctness of the extrac-
tor, to ensure that the calculated behavior indeed corresponds to the behavior of the program

being abstracted. The extractor itself employs abstraction and simplification rules to the
stepwise extraction of program functions of the input program's control structures. The be-

havior calculations are provided to a graphical interface to create presentation formats with
appropriate human factors. Users need never be exposed to the underlying mathematics, but

they can have confidence in the abstracted behavior based on the knowledge that it was de-

rived with sound mathematical methods.

User

I Controls

IGraphic t

Sinterface

modification I Simplification •: ! analyss
cosrrectines

Rules

F•iogure F unction E thitt r

•.'- •,:,,',-: ExtractorCa lo

Seecionr a:Fnd to Extractor Arhiecur

The behavior catalogs that are produced by Function Extractors exhibit useful properties for

human understanding. Consider the example Java program of Figure 4, which advances loans

in $100 increments to bank accounts with negative balances, and its behavior catalog de-
picted in Figure 5, which was derived through manual application of extraction algorithms.

10 CMU/SEI-2005-TR-01 5

public class AccountRecord I
public int acct-num;
public double balance;
public int loan-out;
public int loanmax;

}l/end of AccountRecord

public class AdjustRecord
extends AccountRecord

public bool default;
}/l end of AdjustRecord

public static AdjustRecord classify-account
(AccountRecord acctRec) {

AdjustRecord adjustRec = new AdjustRecordo;
adjustRec.acctLnum = acctRec.acctnum;
adjustRec.balance = acctRec.balance;
adjustRec.loan-out = acctRec.loanout;
adjustRec.loan-max = acctRec.loan-max;

while ((adjustRec.balance < 0.00) &&
(adjustRec.loanout + 100) <= adjustRec.loan max))

{
adjustRec.loan-out = adjustRec.loan out + 100;
adjustRec.balance = adjustRec.balance + 100.00;

l
adjustRec.default = (adjRec.balance < 0.00);
return adjustRec;}

Figure 4: An Example Java Program

The behavior catalog shows three cases of behavior that can be applied to each record exam-
ined. The cases are uniformly defined in terms of the fundamental structure of behavior ex-
pression, namely, conditional current assignment statements. Each case is expressed as a con-
dition, which, if true, results in concurrent assignment of the values on the right of the
assignment statements to the data items on the left. That is, these assignments are procedure
free and occur all at once; they represent the net functional effect of the program from input
to output for each case. These cases are disjoint; only one case is applied to each record. Ex-

pressing behavior in disjoint form is extremely important in localizing human reasoning; each
case can be understood in isolation with the knowledge that no side effects are present.

Because the program behavior is coalesced and aggregated into these compact forms, it is

straightforward, for example, for an analyst to quickly determine whether or not the three
cases correctly implement the bank's business rules that define policies for advancing loans
to accounts with negative balances.

CMU/SEI-2005-TR-01 5 11

if (acctRec.balance >= 0.00)
thenl: EXIT

adjustRec.ecct-num = acctRec.acct_nurn

adjustRec.balance = acctRec.balance
i adjustRec.loan-out = acctRec.loan_out

SUMARY adjustRec.loan-max = ecctRec.loan-max
adjustRec.clefault =.- false

1. AccountRecord acctRec

ENTER Object is unchanged
2. AdjustRecord adjustRec

A new object adjustRec is created and
returned, the contents of which are OR
described in three cases: if (acctRec.balance < 0.00) and

(acctRec.loan..out + 100 > acctRec.loan max)

EXITthen

adjustRec.acct-num = acctRec.acct_num
adjustRec.balance = acctRec.balance
adjustRec.loanout = acctRec.loanout
adjustRec.loanmax = acctRec.loanmax
adjustRec.default ltrue

m F ncOn n if (acctRec.balance < 0.00) and
(aectRec.loan_out + 100 e = acctRec.loan-max)

termi = ressire qr d mnd times 100.00 must be added

cg to athe i.balance to make it
then

EXIT

f ih btegatsve adjustpec.acctnnum = acctRec.acctinumadjustRec.balance = acctRec.balance + (100.00 *cterm) --n c
term2 = maet mum times 100.00 can be added to adjustRec.loangout = accmRec.loanrout + (100 term)

acctRec~loan -out without exceding adjustRec.loan-max = acctRec.loan-max
acctRec.loan-max I L adjustRec.default = false

Ficoure 5 i Te bracetsBehavior Catalog of the Example Program

2.5 Function Extraction and Correctness
Verif ication

Function Extraction and correctness verification are closely related. The function-theoretic

verification process requires determining the actual functional behavior of a program and
comparing it to the intended function for equivalence (or not). The intended function can be

furnished by the programmer, and the actual function can be derived by Function Extraction.
All that remains is to compare the actual and intended functions.

In illustration of this process, consider the miniature program of Figure 6, a sequence of three
assignments operating on small integer variables x and y. The programmer has attached a
comment (in square brackets) to the do keyword that defines the intended function of the
program as a concurrent assignment, namely x, y : = y, x - y. A Function Extraction is per-
formed on the program, in this case carried out by a simple composition of the effects of each
assignment and a derivation of final values for x and y in terms of initial values. This process

reveals that the program exchanges the values of x and y, that is, x3, y3 := yO, x0, or simply
x, y := y, x. It is then a simple matter to compare this actual behavior to the intended behavior

and determine that the program is indeed incorrect.

12 CMU/SEI-2005-TR-01 5

intended function

Program:

FQuestion: is this program coirect?
do fx, y :y, x -y]

x + y
y x -y Answer. Function
X=X -y Extraction and

Ienddo comparison to
intended function

Function extraction:

assignment x y

1 Xx:=+ y X1=XO+ yo yl =YO
2 y:= x -y x2d =x y2 =xl- yl
3 x :=x -y x3 =x2 -y2 y3 =y2

Derivation of program behavior
x3 = x2 - y2 y3= y2Program behavior.

= Xl- (X - yl) = xl- yl X =Y

= YO= x0 = > f intended function -*

program is incorrect

Figure 6: Correctness Verification Through Function Extraction

CMU/SEI-2005-TR-Q1 5 13

14 CMU/SEI-2005-TR-O1 5

3 FX Impacts

To better understand the potential impact of FX technology, we begin by assessing possible
applications for FX within the software development life cycle over a future 10-year time
frame. We then extend the discussion to FX impacts on various programming language envi-
ronments, software technologies (e.g., agile methods, Web services) and the broader field of
software engineering (e.g., education, workforce).

3.1 FX Impacts on Software Development Life-Cycle
Activities

Automated behavior calculation has potential for widespread use and transformational impact
on the software development life cycle. Improvements are possible in developer productivity
and in the quality of the software development artifacts produced in each of the life-cycle
activities. However, it is important to evaluate where FX will have the greatest impact in the
software life cycle in order to focus research efforts and resources for maximum leverage.
Here we briefly discuss the anticipated impacts of FX in the following activities.

3.1.1 System Specification
Software system requirements are typically represented in natural language (e.g., structured
English) to support the essential dialog between system stakeholders (e.g., owners, users,
managers) and developers as a system is being defined. The inherent difficulties of capturing
the semantics of natural languages make FX technologies ill-suited for initial elicitation and
analysis of system requirements. However, translation of requirements to more precise speci-
fication languages will allow FX to support the activities of system requirements engineering
effectively. The semantics of a specification language can be mapped into a Specification
Behavior Extractor and used to extract and analyze the behavior defined by system specifica-
tions in a Specification Behavior Catalog as shown in Figure 7. Such analysis can be aug-
mented and extended by interactive Behavior Catalog Analyzers that parse, organize, search,
and produce subsets of behavior definitions to assist human understanding.

CMU/SEI-2005-TR-015 15

Behavior

fig SpecificationormLanguage •

Secontext a Specidication oF ec v olv Behavior

w Behavior i or u i Catalog

Specificationst. .t Beai

2S yt m tExtractor c uAnalyzer
be analyzed op twllh

Figure 7: FX Use for System Specification

In this context, a related application of FX technology involves reengineering existing soft-
ware components to capture their as-built specifications for use in new or revitalized system
specifications.

3.1.2 System Architecture

The future of software system development will be incre b ec tt -centric. The
growing importance of component-based development and service-oriented architectures
points to system architectures as the key blueprints for implementation, integration, and test-
ing. Research on representation languages for system architectures is active; however, no sin-
gle architecture language is in wide use. System architectures are largely represented by in-
formal diagrams and pictures. Thus, the impact of FX technology on system architecture will
remain limited until the semantics of system architecture becomes better understood and rep-
resented. Figure 8 demonstrates how FX can support the understanding of architecture behav-
ior. In this case, an opportunity exists to develop Behavior Catalog Analyzers that compare

specified behavior to the behavior of architectural representations for conformance.

Specification
Behavior

Architecture FormLanguage
Semantics

Arhtetr Architecture Behavior

AcitcuetBeair1 Behaviorlo Catalog
Arhie cturly edt Extractor C tlgAnalyzer

Figure 8: FX Use for System Architecture

3.1.3 Component Design

System architectures typically define software components as units of functionality. The
functionality defined by components can be provisioned in several ways-by purchase of

16 CMU/SEI-2005-TR-01 5

commercial components (e.g., commercial off-the-shelf [COTS] products), use of online ser-
vices, or in-house implementation. In all cases, the development organization must have full
understanding of components to ensure that their behaviors are necessary and sufficient and
that no malicious or undesirable behaviors are present.

Formal design languages, including both text and graphic languages, can provide well-
defined semantics for use in FX automation. As depicted in Figure 9, the behavior of compo-
nents expressed in structured form can be extracted from design representations and analyzed
for correctness and completeness based on a comparison with system specifications and ar-
chitectures. While rigorous design languages are not widely used throughout the software
development industry, movements to require formal design of safety-critical systems are evi-
dent. FX technology will help developers demonstrate compliance to such requirements in
the future. In addition, the evolution of popular modeling languages such as Unified Model-
ing Language (UML) may eventually result in sufficient semantic precision to permit FX
automation to be developed.

,Specification Architecture
Behavior Behavior
Catalog Catalog

Design Behavior
Language Normal Form

Semantics
e DfriCmpnenaDeig

DesignB I.v IoehvroI ~Behavior :Design•,•r CatalogI
C o m p o n e n t E xtract o r
design to be CatIaAalyerg

analyzed

Figure 9: FX Use for Component Design

3.1.4 Component Evaluation and Selection

Components that are acquired from external vendors or even from internal reuse repositories
present major challenges to developers who must understand their behavior. FX automation
can provide a solution. As shown in Figure 10, a Function Extractor based on the semantics
of the component's programming language can accept an unknown component and produce a
complete behavior catalog. Note that this analysis is preceded by a Structure Transformer that
maps the input component logic into structured form to permit a stepwise Function Extrac-
tion process. Automated program structuring is defined by the constructive proof of the
Structure Theorem [Prowell 99]. The resulting behavior catalog can then be analyzed and

compared to its component design catalog, as well as system specification and architecture
catalogs, if available. By evaluating several components in this manner, developers can create
a basis for the best selection to meet requirements.

CMU/SEI-2005-TR-015 17

b Programmingt
aBehavior a nalyze

Language Normal Form
Semantics , J

•-• •-• BehaviorI

Component to Structure Function Cm!! Catalog
be evaluated Transformer 10Extractor -1-EeairAnalyzer

Figure 10: FX Use for Component Evaluation and Selection

As examples of the application of FX technology for component evaluation, consider the

following situations:

"* legacy programs - A developer submits a legacy program to an FX system to understand

its behavior in order to integrate it with newly developed components.

"* COTS products - A systems engineer requests a product behavior catalog from a COTS
vendor to evaluate for planned use in a new system.

"* service integration - Before signing an agreement to include an online service in a criti-
cal supply chain application, a systems integrator requires the service provider to run the

service through an FX system in order to analyze the full set of service behaviors. Note
that the provider need not expose any proprietary code to the service user, only the ser-

vice behaviors.

3.1.5 Component Implementation

When a decision is made to develop a required component from scratch, FX automation can
play an important role during the evolving implementation. As each set of required functions

is developed, a software engineer can work interactively with an FX system to determine if
the evolving implementation indeed provides the set of functions intended. In this role, an FX
system is employed as shown in Figure 10. As new code is introduced into an evolving com-
ponent, the FX system can report on the corresponding additional behaviors, as well as any
changes to prior behaviors. Errors of commission or omission can thus be identified during
the implementation process, and extraneous behavior isolated and removed.

3.1.6 Component Correctness Verification

Significant time and effort are often allocated during software development to verify the cor-
rectness and quality of software designs and implementations. Reviews, inspections, and unit
testing are resource-intensive activities used to evaluate components against their specifica-

tions. As noted above, at its core, FX technology is closely related to correctness verification.
Programmers can add intended functions (expressed in a standard language form as com-
ments) to the control structures of implementations to permit FX automation to extract the
behavior of each control structure and compare it to the corresponding intended function to

18 CMU/SEI-2005-TR-01 5

determine whether or not it is correct. This process is depicted in Figure 11, where the FX
capability is embedded within a Correctness Verifier.

Programming
Language
Semantics J

Correctness Correct or Incorrect
Component with Verifier with respect to
embedded intended functions
intended functions

Figure 11: FX Adaptation for Correctness Verification

3.1.7 System Integration

Function Extractors are essentially generalized composition engines, and they can also play a
role in the integration of software components as guided by a system architecture. Based on
the behavior catalog of each component, FX technology, guided by mathematical rules of
component composition, can be adapted to integrate uses of the components into an assem-
bled subsystem with a new, composite behavior catalog. The architecture specifies intended
and allowable usage patterns (i.e., control flows and data flows) among the integrated com-
ponents. Figure 12 illustrates this process, where FX technology is embedded within a Com-
ponent Composition Generator.

C mComp Ione 1

Composition Behavior
Generator Catalog

CompCnent n

Individual
Component Behavior
Behaviors Catalog

Analyzer Integrated
Component
Behavior

Figure 12: FX Use for System Integration

3.1.8 System Testing

With the advent of FX technology, an opportunity exists for subsystem, system, and customer
acceptance testing to shift from defect detection to certification of fitness for use. Subsystems
and entire systems can be processed by FX automation, and resulting behavior catalogs com-
pared with specifications and analyzed by stakeholders. A reduced set of test scenarios can be
developed to demonstrate correct execution, because only one test per disjoint case of behav-
ior is sufficient to validate all the behavior defined by that case. Of course, testing of assump-

CMU/SEI-2005-TR-015 19

tions regarding environmental conditions, hardware platforms, and usage patterns must be
carried out as well.

Additional testing effort can be devoted to validating the level of quality attributes provided

by the system. For example, system testing for the qualities of performance, security, privacy,
reliability, survivability, and maintainability, to mention a few, will become a greater focus of

system testing.

Another important consideration is that eventual industry standards for FX technology could
support outsourcing of system testing to independent groups that specialize in certifying the

correctness and quality of software systems. As in more mature engineering fields, independ-

ent certification of quality standards for software systems with an industry-wide stamp of
approval will help provide greater levels of trust in critical systems.

3.1.9 System Maintenance and Evolution

It is generally accepted that approximately 80% of the cost of a software system occurs after
it is deployed, in the form of maintenance and upgrades to meet evolving customer require-

ments. FX technology can support maintenance and evolution activities while providing op-

portunities for cost savings and quality improvements. Figure 13 illustrates the use of FX
automation for system maintenance and evolution.

C u rren t System and !N ew Behavior
Behavior Component Function Behavior Catalog

Maintenance Extractor C Analyzer

Figure 13: FX Use in System Maintenance and Evolution

The key to system maintenance with FX technology is keeping behavior catalogs up to date

automatically. As maintenance is performed on an operational system (for example, to im-

prove performance or enhance security), the resulting system must still produce the same in-
tended behaviors for unaffected functions as found in the catalog. As in system testing, a re-
duced set of regression test scenarios can provide a level of confidence that unaffected

behaviors have remained unchanged.

In terms of system evolution, behavior catalogs provide a formal baseline against which all

changes can be compared. New or modified behaviors can be specified initially in specifica-
tion behavior catalogs and traced through component design and implementation catalogs.

Thus, developers can determine where and how to make required changes in system specifi-
cations, component designs, and code. Once code changes are made, FX automation can help

ensure they have desired effects, while checking the integrity of behaviors that must remain
unmodified.

20 CMU/SEI-2005-TR-015

Even when an operational system is not subject to maintenance and evolution activities, it
may be wise to periodically perform Function Extraction to help ensure that no malicious or

inadvertent modifications have been introduced. Frequent application of the FX technology
can help provide users with a level of confidence that no security breaches have occurred
since the previous FX analysis.

3.2 FX Impacts on Programming Language
Environments

FX automation requires a considerable one-time effort to build a Function Extractor for each
language (see Figures 1 and 3). Thus, it will be important to focus resources on developing
Function Extractors for programming languages and environments that will have the greatest
impact for industrial software development.

3.2.1 Assembler Languages

CERT has selected an Assembler Language environment as the initial target for development
of a Function Extractor. The goal of the Function Extraction for Malicious Code system is to
generate behavior catalogs for programs written in Intel Assembler Language. Fast and pre-
cise analysis of the malicious code's function will enable analysts to develop countermea-
sures quickly. A prototype of the FX/MC system is under development. This effort is provid-
ing knowledge and experience that will guide development of Function Extractors for other
language environments.

3.2.2 Imperative Languages: COBOL and C
Many legacy systems and components have been programmed in imperative languages such
as COBOL, FORTRAN, and C. FX automation for these languages would assist in mainte-
nance and evolution of legacy code, reengineering of components, and development of new
systems. FX development can deal with the lack of complete and rigorous semantics for
many imperative language environments by augmenting semantic definitions as necessary
based on the semantics of compiler implementations.

3.2.3 Object-Oriented Languages: C++ and Java

The past several decades have seen the growing use of object-oriented (00) programming
languages (e.g., C++ and Java) for system development. While FX automation for 00 lan-
guages would be similar to imperative languages, the resulting behavior catalogs might be
represented quite differently, for example, as interactions among objects rather than as opera-
tions for updating state data. Again, any uncertainties in formal semantics for 00 languages
can be managed in developing FX automation.

CMU/SEI-2005-TR-015 21

3.2.4 Rapid Development Languages: Visual Basic

Rapid development languages such as Visual Basic are in widespread use, often to create
event-driven systems with extensive user interface capabilities. FX automation for these lan-

guages will require semantic definitions for input and output events and their associated func-
tions.

3.3 FX Impact on Software Engineering Issues
The following discussion illustrates the potential impact of Function Extraction on aspects of

software engineering and software development projects.

3.3.1 Component-Based Development

Mature software development organizations employ the best practices of component-based
systems development. Rigorous system specifications and architectures provide the frame-

work for provisioning referentially transparent components from a wide variety of sources.
Software components that meet a required set of functional behaviors in the system architec-
ture may be purchased commercially (COTS products), leased on a per-use basis as a service,
modified from a internal legacy component, reused from an internal reuse repository, or built
from scratch either internally or externally through vendor contracts.

FX automation could be used in component-based development to define the functional be-

haviors of all provisioned components and to match these component behaviors with the de-
sired behaviors in the system specification. The design, evaluation, selection, implementa-
tion, verification, and composition of components would make effective use of FX as
described in life-cycle activities discussed in Section 3.1.

3.3.2 Reengineering of Legacy Systems

Effective reengineering and revitalization of legacy systems requires first and foremost a
complete understanding of their functional behavior. Capturing the behavior of an existing
system (i.e., reverse engineering) through FX automation allows a software engineer to make

modifications, additions, and deletions to the system at the fundamental level of behavior
specification. The changes can then be reengineered into the legacy system through design,
implementation, and testing activities (i.e., forward engineering).

3.3.3 Quality Assurance of Software

Software system quality is judged primarily by a system's conformance to its behavior speci-
fications. Component verification through reviews and inspections can be guided by the ap-
plication of FX automation to evolving designs and implementations to ensure correct behav-

ior throughout the development process. Quality metrics could include the percentage of

22 CMU/SEI-2005-TR-01 5

specified behaviors currently verified to be available in the component and eventually in the
software system.

The quality of a software system extends beyond functional correctness and conformance to
specifications. Additional quality attributes to be validated include system performance, reli-
ability, usability, survivability, and many other relevant qualities. Research is required to rep-
resent and manipulate these quality attributes in computational formats that are amenable to
analysis through FX automation.

3.3.4 Component Reuse

Creation of an effective component reuse strategy for an organization requires a focus on
both the production and consumption of reusable components. FX technology can support
both of these aspects of reuse. Producing behavior catalogs for components can enhance their
potential reuse by providing an efficient way to search for desired behaviors. For example, an
automated search engine in the form of a Behavior Catalog Analyzer could apply a desired
set of behaviors to create a list of available components in a reuse repository whose behavior
catalogs provide full or partial matches. The search engine could also support composition
analysis of multiple components and suggest the most effective set of reuse components to
satisfy the greatest percentage of required behaviors.

3.3.5 Automated CASE Tools

The mathematical foundations of FX make it readily adaptable to automated computer as-
sisted software engineering (CASE) tools. Development of automation will enable the advan-
tages of FX to be integrated into all system development life-cycle activities that produce
semantically rich artifacts. Research is required to develop effective human/computer inter-
faces to support human decision making. We envision integration of FX technology into ex-
isting CASE environments to provide a full set of essential software engineering capabilities.

3.3.6 Web Services

Service-oriented architectures (SOAs) focus on integration of internal and external (e.g.,
Web-based) services with other software components in an application system. The use of a
Web service in a critical application carries risks to performance, availability, reliability, pri-
vacy, and security. The full behavior of a Web service is often unknown to its users. However,
with FX automation, a user could request a service behavior catalog as a prerequisite for in-
tegrating the service into a SOA application. In this way, the propriety design and implemen-
tation of the service can remain confidential while its functional behavior can be safely ex-
posed to users.

CMU/SEI-2005-TR-015 23

3.3.7 Agile Methods of Software Development

Many of the techniques of agile methods can be supported by FX automation. For example,
in pair programming, the team can use behavior catalogs of system specifications and designs
to develop test cases before building the system code. The pair would receive rapid feedback
from a Function Extractor on whether the evolving code meets the required functional behav-
ior. Also, the agile method of design refactoring meshes well with the FX concept of continu-

ally evolving a software system to meet a full set of required behaviors. In general, the agile
philosophy of producing software artifacts and evolving them instead of following a disci-
plined development process from beginning to end requires a clear statement of specifica-
tions, such as is found in a behavior catalog, to be successful.

3.3.8 Distributed Computing

Distributed computing architectures, including applications of grid computing, place chal-

lenging demands on the development and dynamic execution of software systems. The distri-
bution of application components and data to different platforms involves complex tradeoffs
of performance, availability, security, and other system quality attributes. Research on ex-

tending FX technology to real-time system monitoring is needed to understand the dynamic
behaviors of components and their real-time compositions in flow structure architectures.

3.3.9 System Documentation

FX automation can capture the behavior of legacy systems and document it for system users.

For new system development, FX can be employed to provide behavioral documentation for
the evolving system. Documentation writers can use system behavior catalogs as the basis for
producing both system and user manuals.

3.4 FX Impacts on the Software Engineering Field
FX theory and technology can have an impact on a number of important areas of the software
engineering field.

3.4.1 Software Engineering Education

If FX becomes an integral technology throughout the software development life cycle, educa-

tion and training on FX theory and practice will be necessary. Software engineering educa-
tion could be transformed at the undergraduate and graduate levels, just as computational
methods have transformed education in other engineering disciplines. FX could be incorpo-

rated in beginning programming courses to show students the actual behaviors of the code
they write as compared to intended behaviors. Courses within the software engineering cur-
ricula, along with accompanying textbooks and training materials, would require modifica-
tion to include FX concepts and applications. In addition, new industrial skills and positions
may emerge. For example, there will be a need for individuals who specialize in subject-

24 CMU/SEI-2005-TR-01 5

matter semantics definition for analysis and design of systems in specific application do-

mains.

3.4.2 Software System Acquisition

The procurement and acquisition of software systems will likely be influenced by knowledge
gained from FX systems. For example, organizational and mission objectives can be repre-

sented in specified behaviors, and candidate software systems analyzed with FX automation
to determine which systems best meet behavioral objectives. Acquisition decisions can thus
be based on quantifiable parameters of the number of behaviors that are satisfied or not. In-
dustry-wide compliance with FX standard technologies will enable vendors to demonstrate

the range and quality of behaviors in their systems, while providing customers with a com-
mon platform for evaluating and comparing competitors' systems.

3.4.3 Management of Software Development

FX automation can give software project managers a new set of capabilities to improve con-
trol and reduce risk. In place of costly and time-consuming reviews and inspections, manag-
ers would have the ability to submit specification, design, and implementation artifacts to FX

systems to judge correctness and assess progress. Tracking the number of intended behaviors
that have been successfully designed, coded, and integrated into a system provides a clear
way to measure project status. The use of FX technology across projects could increase pre-
dictability of project schedules, staffing, and required resources in the development organiza-
tion.

3.4.4 Software Development Teams

The structure of software development teams may be affected by the introduction of FX
technology. A decision will be required on whether to train all team members on FX tech-
niques or to designate specific individuals as FX experts. Since FX can be applied to many

activities in the development life cycle, all project team roles will require some FX training.
Experience in using FX on actual projects should help determine how team roles may change.

Another consideration is the increased span of intellectual control afforded by FX automa-
tion, which may mean that fewer people are required to develop complex systems.

3.4.5 Software Development Organization

The software development organization and information technology (IT) staffing may change
to reflect the use of FX technologies. For example, a distinct FX technology group could be

formed to maintain and enhance the scope of languages and application domains supported
by FX automation. As described in the section on FX theory, significant effort is required to

capture the semantics of various specification, design, and programming languages. In addi-
tion, the adaptation of FX technology to different application domains (e.g., finance, tele-

CMU/SEI-2005-TR-01 5 25

communication, aerospace, defense) is an area of ongoing research. A commitment to support
FX technology may require rethinking the structure of software organizations.

3.4.6 Software Development Industry

If FX becomes a way of life in software development, the industry may experience signifi-
cant changes. For example, FX standards could transform component-based software devel-
opment. Component and service vendors could produce documentation in FX-compatible

formats to support evaluation, selection, and acquisition of components and services in an
open marketplace. Outsourcing of key development activities could become more attractive
with improved capabilities to communicate specifications and verify the function and quality
of outsourced deliverables. Organizations could focus their resources on key competencies

while outsourcing software development with confidence that FX methods will allow them to
ensure compliance with quality standards. We may also see the creation of software vendors
who specialize in FX products and services to support software development organizations.

3.4.7 Software Engineering Workforce

The use of FX technologies could enhance the professionalism and diversity of the software
engineering workforce. Movement of FX theory into engineering practices and automation
will be a clear sign of increasing maturity of the field. FX technology can support a diverse

business structure of system component development, selection, and integration that cuts
across all cultures and regions, and provides benefits to developers of the best competitive

solutions, regardless of their origins and locations. Facility with FX-based technologies
represents an advanced software engineering capability that could be retained onshore while
implementation tasks migrate to offshore organizations.

3.4.8 Software Engineering Economics

Current software engineering technologies and practices incur considerable costs in terms of
staffing, budget, schedule, and economic resources. Current methods could gradually be re-
placed as software development organizations gravitate to the predictability, quality, reduced
development time, and lower cost of FX technologies. A tipping point could occur when con-
ventionally developed software becomes comparatively uneconomical to create and use.

26 CMU/SEI-2005-TR-01 5

4 The FX Research Study

In order to inform and guide the direction of FX research and development, there is an imme-
diate need to better understand how enterprises will employ FX technologies in their software
engineering environments. Which of the impacts discussed in Section 3 matter most to soft-
ware development groups?

Table 2 shows a portion of the many opportunities we face in deciding what direction to take.
It lists software development activities in the rows and potential language environments in
the columns. The highlighted cell is our starting point-the current effort to develop a Func-
tion Extractor for Assembler Language. To help determine the next steps of FX development,
we gathered and analyzed data from potential users of FX technologies. With this informa-
tion, we are better able to recommend high-payoff areas for FX research and development.

CMU/SEI-2005-TR-015 27

Cd -)

-0 -0

-~ ~ ~ . 0 Cl)0 ~ d

0 ~0 00 r- 0 a 0 0
42)_ __ _ .2_ '5: N 0 .-_ N___ N

0

bb Ofl tol wf
.2. U)0 0C

Cd d)C

42 > 0 3~Cd C

~~~~ >CZ -- I's0 ~00 0

cc 0 . 1~ !N " 0 0C NL -N *-Nr

Cd L) 0 C d co co

cc 0 0d z c0 0 z ~
CIO

- 0
o 0)

Cd -0-0 _ - Cd Cd Clc<C = -cd
= 0 0 0 4. C) C~. ~

0 E cd C.) Cd cc cd
cc x. th c Cý 00 d N

g3 - $- L L)ý

00 . -0 - . L 0 0 0

ed t Er
cc 0 0, 0

0 0
40 0 0 N N~00 0 0 0

CL )

cl 0 2-, 0 t 2: .23
in E E Cd ozi

-00 0~C

0~~ to~9 U

0~~~ o~~C ~ d

2C,

u 00

M0 - - w
t - -4 C4 I4) -a, 3-

w co

CdPC

Cd Cd d

cw w

on cocC



4.1 Research Questions
To structure the research study, we posed two sets of three questions each. It is generally un-

derstood that program comprehension is a critical aspect of all software development and
maintenance activities [Rajlich 02]. Prior research has found that both program and task
characteristics interact to impact the nature of program comprehension [Storey 99], so it is
important to develop tools with specific software engineering activities in mind. Therefore
the first three research questions for this study focused on understanding the current ap-
proaches to, cost of, and impacts of program comprehension, with particular attention to how
these vary by type of activity:

Research Question 1: What techniques are in current practice to understand and document
program behavior?

Research Question 2: What are the typical costs of program comprehension and documen-

tation to development?

Research Question 3: What is the relationship of program comprehension and system qual-
ity?

The second set of research questions centered on the views about the potential of FX technol-

ogy from developers:

Research Question 4: In which system development activities and environments does FX
technology have the potential for greatest impact?

Research Question 5: What are the potential impacts of FX technology on other software
engineering technologies and issues?

Research Question 6: What are the challenges to adoption of FX technology?

4.2 Study Design
To answer these research questions, an empirical study was performed. Study participants
were experienced system developers. The study questionnaire was developed by the FX re-

search team and was pilot tested with an academic audience (professors and doctoral students
in information systems at a large research university). Based on the pilot test data and open-
ended feedback, the questionnaire was significantly revised. The final version of the ques-

tionnaire is provided in Appendix A. The initial questionnaire items focused on the potential
of FX technology (Research Questions 4-6). When the questionnaire was revised, items to
investigate the current status of program comprehension in industry (Research Questions 1-3)
were added.

The questionnaire uses a combination of direct-answer questions, Likert scale ratings, rank-
ings, and open-ended questions to solicit the data desired to answer the research questions.

CMU/SEI-2005-TR-015 29



Table 3 shows the relationship of research questions and goals of the study to the specific
items on the questionnaire. Since we are particularly concerned with understanding the poten-
tial impact of FX on specific software engineering activities, there are three items of different

question types (rating on a Likert scale, ranking, and open-ended) included to improve the
reliability of answers to these questions.

Table 3: Questionnaire Items and Types

Research Questions/Goals of Study Questionnaire Items and Types

Demographic data on participants 1 (direct, enter age)

2 (select from list)

Acceptance challenges for FX 11 (open-ended)

Guidance for FX research program 12 (open-ended)

Research Questions 1 - 3: Existing Software Development Environment

Methods and tools currently used in program comprehension 3a (open-ended)

Cost in time of program comprehension (both overall and for 3b and 4 (enter amount of time)

specific software engineering [SE] activities)

Impact of program comprehension 3c (enter amount of understanding)

3d (open-ended)

Research Questions 4 - 6: Potential of FX Technology

Potential impact on SE activities 5 (Likert scale rating)

6 (ranking)

7 (open-ended)

Important programming environments for FX 8 (ranking)

Potential impact on SE technologies 9 (Likert scale rating)

Potential impact on SE areas 10 (Likert scale rating)

The FX study for this report was performed at a major Fortune 100 company with a large and
sophisticated group of software developers. The session began with a detailed presentation on
FX technology. This training was provided by the researchers to a roomful of software devel-
opers and remotely located individuals on a Webcast. The remote group could see the presen-
tation slides and had two-way audio. The training presented FX technology and detailed ex-
amples of how the technology could work in development. This presentation lasted
approximately 90 minutes followed by an open question-and-answer session.

After the training session, participants were requested to complete the final questionnaire on
potential impacts of FX technology. Software engineers from both on-site and remote loca-
tions provided usable questionnaire data. The following section discusses the results of this
study.

30 CMU/SEI-2005-TR-01 5



4.3 Study Results

4.3.1 Demographic Data

The average number of years of experience for the software engineers in the study is 23, with

a range between 8 and 40 years. Most respondents reported that their primary area of experi-
ence in software engineering has been in technical work in industry, but a few respondents
reported most experience in managerial work in industry and one respondent reported most

software engineering experience in research.

4.3.2 Existing Software Development Environment: Research
Questions 1-3

Research Question 1: What techniques are in current practice to understand and document
program behavior?

Industry respondents report a wide range of models and tools currently in use that support

better understanding of system behaviors. The models and tools shown in Table 4 capture
parts of system information that can be used manually to build a partial mental picture of
overall system behaviors. None of the listed models or tools provides a complete behavioral
specification of the software system. This was a direct-answer question on the questionnaire.

Table 4: Current Program Understanding Techniques

Technique for Understanding Programs Percentage of Responses

Object-oriented system models (e.g., UML) 23%

Traditional system models (e.g., data flow diagrams, engineering review 23%

diagrams)

Simulation tools 15%

Statistical comparison of test and quality analysis results 15%

Reading and analyzing code 8%

Rapid application development 8%

Primitive techniques (e.g., PRINT statements) 8%

Research Question 2: What are the typical costs of program comprehension and documenta-
tion to development?

The data indicate the high cost to developers of building comprehension of program behavior

by reading system development artifacts. On average, the respondents believe that developers
spend over a quarter of their time (28%) reading and understanding the behaviors of system

development artifacts written by themselves or others. This overall average goes up slightly

CMU/SEI-2005-TR-015 31



when asked about the percentage of time spent on such reading during specific software de-
velopment activities. This was a direct-answer question. The data are presented in Table 5.

It should be noted that individual respondents varied widely in their assessments of the per-
centage of time spent on these activities, with estimates ranging between a low of 1 or 5 to a
high of 80 or 90. Some of this variation in range can be attributed to one individual reporting
consistently low estimates of the percentage of time spent (e.g., one person's estimates were
between 1 and 10 for all activities), but most respondents clearly differentiated between ac-
tivities in their estimates.

Table 5: Percentage of Developer Time Spent Understanding Behaviors

System Development Activity Percentage of Time Spent

Understanding Behaviors

System specification 27%

System architecture 30%

Component design 32%

Component evaluation and selection 40%

Component implementation 29%

Component correctness verification 38%

System integration 31%

System testing 38%

System maintenance and evolution 40%

Research Question 3: What is the relationship of program comprehension and system qual-
ity?

By the end of a typical software development project, the respondents reported that most, but
not all, of the behaviors of the system are completely understood. The average estimate was
that 84% of the system behaviors are understood upon project completion. As a consequence

of this incomplete understanding of system behaviors, respondents identified several negative
impacts on the quality of the system:

"* reduced system performance

"* incomplete and/or incorrect specifications, that lead to data errors (because invalid values

are not caught or because imprecise business rules were implemented) and logic errors

(because needed options were not specified)

"* extensive rework when problems are discovered late in testing or in operations

As one subject expressed it, incomplete understanding of system behavior results in "sur-
prises in expectations, surprises in interactions, but generally undesired behavior."

32 CMU/SEI-2005-TR-015



4.3.3 The Potential of FX Technology: Research Questions
4-6

Research Question 4: In which systems development activities and environments does FX

technology have the potential for greatest impact?

The study subjects were asked to evaluate the potential positive impacts of FX in comparison
to other technologies they have used to support software engineering work. They found clear
positive impacts of FX in nearly all of the software development life-cycle activities. The
questionnaire gathered data on FX impacts in two forms. First, a Likert-style rating produced
a value from 1 to 7 where 1 is "no impact" and 7 is "very strong impact." Second, the re-
spondent was asked to rank the nine software development activities from 1 (greatest impact)
to 9 (least impact). Two ways of obtaining the same information are often used in surveys to
validate the consistency of data. The average data values for the Likert-style ratings and the
rankings are presented in Table 6.

Table 6: FX Impacts on System Development Activities
System Development Activity Average Likert Average ImpactImpact Rating Ranking

(1-Low to 7-High) (1-High to 9-Low)

System specification 2.3 6.2

System architecture 2.6 6.1

Component design 3.3 5.4

Component evaluation and selection 4.2 4.3

Component implementation 4.3 4.9

Component correctness verification 5.8 3.1

System integration 4.5 4.4

System testing 4.8 3.8

System maintenance and evolution 4.5 4.3

Both sets of values are presented in Figure 14. The Likert rating scale is shown at the top of

the graph from lowest impact (1) to highest impact (7), and the ranking scale is shown at the
bottom of the graph from lowest rank (9) to highest rank (1). This figure shows that the re-
spondents were very consistent between their ratings and rankings. Component correctness
verification was the activity for which there is the strongest potential impact (average rating
of 5.8 and average ranking of 3.1). As one respondent stated, "FX's strength is in discovery

of complex system behavior, which is good for correctness verification and 'debugging' pro-
duction applications."

FX technologies were rated as having above-average impact on the system development ac-
tivities of component evaluation and selection (average rating of 4.2 and average ranking of

CMU/SEI-2005-TR-015 33



4.3), component implementation (average rating of 4.3 and average ranking of 4.9), system
integration (average rating of 4.5 and average ranking of 4.4), system testing (average rating
of 4.8 and average ranking of 3.8), and system maintenance and evolution (average rating of
4.5 and average ranking of 4.3) activities. One respondent noted, "The tool would make test-
ers salivate."

System specification, system architecture, and component design were rated as activities for
which there is potentially below-average potential impact. The lower ratings are reflected in
this comment by a respondent:"Since specifications will probably not be documented in a
rigorous semantic language representation for the foreseeable future, FX will have limited
impact in those areas, growing slightly as the specification becomes more implementation

specific." However one developer commented, "The technology should be applied at the ear-
lier stages of development life cycle. Specification level would be the best. SEI should team
up with other organizations to develop formal and syntactically precise software specification
languages for this purpose [italics added]." Thus, the lack of well-defined languages for the
front-end of the system development life cycle will inhibit short-term use of FX technologies
in this area. The respondents identified a major need for FX capabilities in the areas of speci-
fication, architecture, and design. However, more research is required on rigorous semantics

in these activities before FX can be applied.

- -~~ - FXIMPACT RATINGS

Low Minimal Below Avg. Average Above Avg. Strong Very Strong
Impact mpact Impact Impact mpact Impact Impact

................. . 2.-------.......-- -.. 6.... ....... - .. .. ..... .
I I I I I I

System Srchitecation _ 12 .61 I I II I I.

S............. ... L.......... ... ..... . . . _ _ _ _ I. . .I I.. .... ....
II I I

"SystemIAchitec're .. .. ................................ ~

Component Evaluation & Selection I I 4.2

__..................................... ... . ..... .... ________ I I I ________ ( . ) I I I _______I-I I (4.3) 1 1 -

Compoent Implementation _____I_ 4.3 i I i .
t | , ~ ~~~~~(4.9) |ni...... ...

_ _ _ _ I _I I I _

Cýponent Correctness Verification II I_ I I 5.8 I
II I 5I I

System !ntegration ........................ I, 1 1 4.51I I W (4.4) I .....I I I I~ ~I
S........... ... I .. I..... II ___4.4) {3.8) II II _ _ _

S t emTesting 1 - '4.8

System Maintenance & Evolution I I I 45 I I

-I i_ _ _ (4.3) ! I I

(9)s (8 () () 3 (2) - (1)
Lowest -Hihs

IFX IMPACT RANKING-

Figure 14: FX Impacts on Software Development Activities (Data from Table 6)

Assembler Language was the programming language environment rated as most important
for the application of FX technology. One software developer noted that FX would be espe-
cially helpful in the Assembler Language environment in identifying malicious code and de-

34 CMU/SEI-2005-TR-015



vice driver verification. The Java language environment was the second most highly rated for

FX application. C and C++ were also highly ranked as important environments, although one
person was concerned that C and C++ miight not be in wide use if it takes a long time to de-
velop FX. Table 7 shows the average rankings for various programming language environ-

ments. The environments were ranked from 1 to 5 with 1 indicating the most important lan-
guage environment for FX application.

Table 7: Programming Language Environments for FX Application

Programming Language Environment Average Ranking

(1-High to 5-Low)

Assembler Languages 2.0

C Language 2.8

C++ Language 3.2

Java Language 2.4

Visual Basic (VB) 4.6

COBOL Language 3.8

Other Languages (Python, UML-MDA, .Net, C#, VB.Net, SysMI) 3.0

Research Question 5: What are the potential impacts of FX technology on other software
engineering technologies and issues?

This research question helps us better understand the relationships and synergies that may
exist between FX technology and other software engineering technologies and issues. The
data collected from the respondents are contained in Tables 8 and 9. In both cases, the tables
show the average impact of FX technology on the designated technology or issue based on a
Likert scale from 1 (no impact) to 7 (very strong impact). The respondents were asked to
judge the impact in comparison with other technologies that they had used in their software
engineering work.

Table 8: Impact of FX Technology on Software Engineering Technologies

Software Engineering Technology Average Rating
(1-Low to 7-High)

Component-based development 4.0

Reengineering of legacy systems 4.7

Quality assurance of software 5.9

Component reuse 5.0

Automated CASE tools 4.0

Web services 3.4

CMU/SEI-2005-TR-015 35



Table 8: Impact of FX Technology on Software Engineering Technologies (cont.)

Software Engineering Technology Average Rating

(1-Low to 7-High)

Agile methods of software development 3.3

Distributed computing 3.6

System documentation 4.8

As seen in Table 8, respondents rated FX technology as having the greatest potential impact
on quality assurance of software (average rating of 5.9), component reuse (average rating of
5.0), system documentation (average rating of 4.8), and reengineering of legacy systems (av-
erage rating of 4.7). They rated FX technology as having a moderate impact on component-
based development, automated CASE tools, and distributed computing. Little potential FX
technology impact was seen on Web services and agile methods.

Respondents identified five areas of software engineering that held above average potential

for FX technology impact: software engineering economics (average rating of 4.6), the soft-
ware development industry (average rating of 4.5), software development teams (average

rating of 4.3), the software development workforce (average rating of 4.2), and the manage-
ment of software development (average rating of 4.1). It is clear from these numbers in Table

9 that most respondents felt that the introduction of effective FX technologies will have a
substantial impact in many areas of software engineering.

Table 9: Impact of FX Technology on Software Engineering Issues

Software Engineering Issue Average Rating

(1-Low to 7-High)

Software engineering education 3.8

Software system acquisition 3.7

Management of software development 4.1

Software development teams 4.3

Software development organization 3.3

Software development industry 4.5

Software development workforce 4.2

Software engineering ethics 3.3

Software engineering economics 4.6

Research Question 6: What are the challenges to adoption of FX technology?

In response to open-ended questions about FX technology challenges and research directions,
the respondents identified many key issues. First, they were concerned about the length of

36 CMU/SEI-2005-TR-01 5



time required to perform the needed FX research and to develop usable FX technology. One
respondent noted, "This looks like a long-term research project." Another stated, "The plan-
ning horizon is farther out than two years for a production capability-it is in the research
stage." Still others said, "This technology seems to be a long way off," and "It appears that
FX is decades out, not just years out."

Other respondents recognized the barriers to acceptance of anything new: "The biggest prob-
lem we encounter is basic resistance to change. Once past that, a clear understanding of how
FX would be used is necessary." Reiterating that thought is this quote: "[FX] must overcome
high skepticism: formal approaches and languages are regarded as academic by industry;
even formal specialists claim that the halting problem is unsolvable, yet FX claims that it will
know?" In addition, they are concerned about potential high learning curves and cost of the
tool.

Key characteristics of FX technology that would be critical to its acceptance are listed below:

* FX technology would have to be a mature, complete tool before being accepted by indus-
try.
(Illustrative quote: "It would have to be a well-developed product before it was accepted.
A lot of engineers don't trust what they can't "see" ... there can be a lot of heel dragging
when it comes to automation for design. This includes software design."

* FX should demonstrate a positive return on investment (ROI).

* FX should be a user-friendly tool that is integrated within development environments.
Thus, a high priority must be placed on human/computer interfaces in an FX tool.

* FX should be able to demonstrate benefits of alternative functions as revealed by the be-
havior catalog.

* FX should not be designed to a specific type of coding or test environment.

The respondents offered some specific concerns about the FX technology approach that re-
flected skepticism. For example, one respondent stated, "All the other software engineering
technologies are also trying to make a program more understandable by modularizing it early
on. Trying to modularize it based on code is kind of late and difficult." Other comments were
more specific about potential problems, such as standard data types and the impact of reuse
on commonality. Other respondents were concerned about how FX technology was currently
positioned, and cautioned, "It should advertise itself as a technology assist to senior software
engineering practitioners rather than a technology automation solution that can function in
CPU [central processing unit] time scales instead of human time scales. FX has the classic
risk of overselling its capability and disillusioning its audience."

In terms of how to proceed with the development of FX technology, it was suggested that the
project should "focus on one or two areas that you can bring to market with a success story
instead of selling to multiple constituencies."

CMU/SEI-2005-TR-015 37



38 CMU/SEI-2005-TR-O1 5



5 Recommendations of the FX Study

The objective of this section is to identify the next steps of the FX research and development
program based on the industry survey data seen above. The data clearly indicate the need for
the following six project goals. In addition, a seventh goal not discussed in the survey in-
strument is recommended by the IRAD study authors. Thus, we strongly recommend that FX
technology directions be focused on well-defined milestones toward the achievement of the
following goals.

5.1 Goal 1: Complete Development of the FX
Prototype for Assembler Language Programs

It is important that the FX project continue with development and deployment of the FX/MC
prototype. The Assembler Language environment was rated as the most important for show-
ing FX impacts by the surveyed software engineers. A success story in the initial develop-
ment of FX technology for understanding malicious code will be a key advantage for demon-
strating its potential to industry.

5.2 Goal 2: Create FX Automation for Correctness
Verification of Programs

The software engineers identified the activity of correctness verification as having the great-
est potential for FX impacts. Software developers are demanding improved methods for un-
derstanding the behaviors of programs and verifying the correctness of these behaviors with
respect to specifications and designs. This information tells us that a short-term goal of the
FX project must be to demonstrate automation of program correctness verification using FX
technology.

5.3 Goal 3: Create FX Automation for High-Level
Programming Environments Starting with Java

The software engineers rated the programming languages of Java, C, and C++ as very impor-
tant for the application of FX technology. It is clear that the software development industry
has great need for support in understanding the behaviors of programs written in these high-
level languages. Thus, another important short-term goal of the FX project will be to develop
a Function Extractor prototype for one or more of the most popular programming languages.
The engineers recommended Java as their first choice.

CMU/SEI-2005-TR-015 39



5.4 Goal 4: Perform Research on Semantics of
System Specification and Architecture for FX
Automation

The software engineers in the survey demonstrated concern and even skepticism that the
promise of FX theory can be successfully transitioned into effective engineering practices for

the front-end activities of system specification and architecture development. A major issue is
the inability to define and represent the semantics of software specifications, architectures,
and high-level designs with state-of-the-art methods. In fact, FX technology is seen as having
little potential impact in these front-end software development activities due largely to the

lack of clear semantics in those areas. An initiative to perform research on the semantics of
software system specification and architecture is required for FX technology to be applied in

these areas. The central thesis of this research is that the ultra-large-scale systems of the fu-
ture can be successfully developed only by exploiting a new generation of semantics-based

computational models at very high levels of abstraction. These models will provide the foun-
dation for a science of software design and prescribe engineering automation to define, pre-
dict, control, and optimize the behaviors of complex systems regardless of size.

5.5 Goal 5: Perform Research on Human/Computer
Interfaces for FX Automation

The effective use of innovative technologies such as FX depends on adaptable and user-
friendly human/computer interfaces. It is important that research on user interfaces for FX be
performed in parallel with development of the automation itself. Computed behavior has not
been available to software engineers in the past, and new reasoning and analysis patterns are
sure to emerge. Research is required to understand the dynamics of this new augmentation of
human intelligence for optimal design of its user interfaces.

5.6 Goal 6: Perform Experimentation with FX
Technology to Evaluate Its Impact

Scientific research requires rigorous experimentation to evaluate the quality and effectiveness
of results. The design artifacts of the FX research and development activities are the theories,
practices, and automated tools that are produced [Hevner 04]. Evaluation of these artifacts

will provide the evidence required by eventual users of the technology to accept and adopt
FX into their software development processes and activities. Any new technology faces ini-
tial resistance because it requires a learning curve and changes in entrenched software devel-

opment practices. Rigorous experimentation with FX technologies resulting in clear evidence
that they improve development productivity and system quality will ease their acceptance
[Green 04, Green 05].

40 CMU/SEI-2005-TR-01 5



5.7 Goal 7: Perform Research on the Semantics of
Software Quality Attributes for FX Automation

In the current state of the art, analysis of software quality attributes such as performance and

security is often carried out through subjective evaluations of little value in the dynamics of

system operation where attribute values can change quickly. A capability to compute attribute

values with mathematical precision would permit both rigorous assessment and improvement

of the security attributes of software during development and the real-time evaluation of sys-

tem performance during operation. Research is required to define computational models for

quality attributes that can be evaluated by FX automation. That is, quality attributes must be

treated as functions to be computed as dynamic properties of systems.

CMU/SEI-2005-TR-015 41



42 CMU/SEI-2005-TR-O1 5



6 Conclusions

This report summarizes FX research and development and investigates the impact of FX on

software engineering. Data collected from active software professionals through a survey in-

strument provides objective and informed guidance on high-leverage paths for future FX ini-
tiatives. The report concludes with seven key recommendations for the future direction of FX

research and development:

1. Complete development of the FX prototype for Assembler Language programs.

2. Create FX automation for correctness verification of programs.

3. Create FX automation for high-level programming environments starting with Java.

4. Perform research on semantics of software specification and architecture for FX automa-

tion.

5. Perform research on human/computer interfaces for FX automation.

6. Perform experimentation with FX technology to evaluate its impact.

7. Perform research on the semantics of software quality attributes for FX automation.

These goals prescribe a challenging strategy for FX evolution that can result in substantial
progress toward next-generation software engineering as a computational discipline.

CMU/SEI-2005-TR-015 43



44 CMU/SEI-2005-TR-Q1 5



Hi 0

cz CI

CL
~-0

0 ID

CdC1
0.0

S0

0 r. U

o 0

C)

Iowa 0 0

0.

o ~to
3- 4) -0 -,- 0 d)0

V W
x 0

~~0.) 0.0/

0 0
U- to 00)C

IL 4.~



L2

Cý

0 H
U)

C~CI.

CdC

0 J

(1I)

0)

'4- 02

0 0

Cd cz

m 42.

bcl 41) 0

00'

0u cd 4)

0~~ 00-4

U,0

Cu0

.0 4) U

00

0Cu( 04 04 4

.0 .2 t d
d4) -4.

0 0
~0 . ~ En

Ocu 0 ) -o W



> U l

CU CILU0 C

1-0

Cd C6

Ul CU 0

0 m0 0 )
C)) UD V. .

C.) 0 U

.0s bb

-o 0 C
CU .0 C

a)C En0
bD 4) 'z a)CU4

CUc -O -o .0.0.

040

030

C14

CU CU) CD)
CU C)

C) CC)
C0 CU C)

CU '0 1
C)C C -,'

C.) C) C
CU C.) ~D



0 C~w

00

cd w

C- Do \

00

1 0 .)

cn m. M foen e

u 0)

0 0

04-
E0 0).

0as
U- ;

00.)~ W0.)-1

0>

to E- E-

> - 0 . 0 
0

vi0 441ici c i i c



00

aCO

4- a

a))

a)D> 
.

-a
0.

0

40

V)) a40

0 u >

0)

C.0))

-D 0t

0D C.)

E a) C

0,a 0 1 ;Ný

COO a) u u -

- ~ 
C,,



0

ooS0

ta,
o M

- 0
> o~

r.

0

.90o

60

C)

44

~.1

0

C14

"•b

ot

> 0m

o

. c- L >

.6 0JJ. LO.) C C



0 ~

C)

-0
rA

Ln

">" 0 \0 " C "

4-- )
0)

fn

0 )~ C

a)

~ > E

a): CIO

o 0

t~ 9

a)u L

o C9c
ýD;

>~c

Cd 4



Ell10

r. ~ Cý

A >~

0 >0

Cll)

bb

a)0

42')

0

04 0En
w

if) If) ~ Cf) Cf) cf f) (Y I)

-14 ccl

4- 4

C-)

as d)

to

~~0
-~a) x c

~~1-4

-to~

to C~
M 4-4 Cu



00

C:.

cU

00

C,3,

Sot0

U u,

to0
0>

.0

0 -

0

0 bb~

0

0~ 04 z.

00

S0 0 L

0 0

on w

0 0
ut

0



C?

0

0

Co

U)

UO



References

URLs are valid as of the publication date of this document.

[Green 04] Green, G; Collins, R.; & Hevner, A. "Perceived Control and the

Diffusion of Software Development Innovations." Journal of High
Technology Management Research 15, 1 (February 2004): 123-144.

[Green 05] Green, G; Hevner, A.; & Collins, R. "The Impacts of Quality and

Productivity Perceptions on the Use of Software Process Improve-
ment Innovations." Information and Software Technology 47, 8
(June 2005): 543-553.

[Hausler 90] Hausler, P.; Pleszkoch, M.; Linger, R.; & Hevner, A. "Using Func-

tion Abstraction to Understand Program Behavior." IEEE Software
7, 1 (January 1990): 55-63.

[Hevner 02] Hevner, A.; Linger, R.; Sobel, A.; & Walton, G. "The Flow-
Service-Quality Framework: Unified Engineering for Large-Scale,
Adaptive Systems," 40064015. Proceedings of the 35th Annual
Hawaii International Conference on System Sciences. Big Island,
Hawaii, January 7-10, 2002. Los Alamitos, CA: IEEE Computer
Society Press, 2002.

[Hevner 04] Hevner, A.; March, S.; Park, J.; & Ram, S. "Design Science Re-
search in Information Systems." Management Information Systems
Quarterly 28, 1 (March 2004): 75-105.

[Hoffman 01] Hoffman, D. & Weiss, D., eds. Software Fundamentals: Collected

Papers by David L. Parnas. Upper Saddle River, NJ: Addison
Wesley, 2001.

CMU/SEI-2005-TR-015 55



[Linger 79] Linger, R.; Mills, H.; & Witt, B. Structured Programming: Theory

and Practice. Reading, MA: Addison Wesley, 1979.

[Linger 02] Linger, R.; Pleszkoch, M.; Walton, G; & Hevner, A. Flow-Service-

Quality Engineering: Foundations for Network System Analysis and
Development (CMU/SEI-2002-TN-001, ADA339792). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2002. http://www.sei.cmu.edu/publications/documents/02.reports

/02tnOOl.html

[McCarthy 63] McCarthy, J. "A Basis for a Mathematical Theory of Computation,"

33-70. Computer Programming and Formal Systems (P. Braffort
and D. Hirschberg, eds.). Amsterdam: North-Holland Publishing

Co., 1963.

[Mills 86] Mills H.; Linger, R.; & Hevner, A. Principles of Information System

Analysis and Design. San Diego, CA: Academic Press, 1986.

[Mills 02] Mills, H. & Linger, R. "Cleanroom Software Engineering: Develop-

ing Software Under Statistical Quality Control," 143-149. Encyclo-
pedia of Software Engineering, 2nd edition. (J. Marciniak, ed.).
New York,, NY: John Wiley & Sons, 2002.

[Pleszkoch 90] Pleszkoch, M.; Hausler, P.; Hevner, A.; & Linger, R. "Function-

Theoretic Principles of Program Understanding," 74-81. Proceed-
ings of the 23rd Annual Hawaii International Conference on System
Science. Kailua-Kona, Hawaii, January 2-5, 1990. Los Alamitos,
CA: IEEE Computer Society Press, 1990.

[Pleszkoch 04] Pleszkoch, M. & Linger, R. "Improving Network System Security
with Function Extraction Technology for Automated Calculation of

Program Behavior," 4789-4798. Proceedings of the 37th Annual

Hawaii International Conference on System Sciences. Big Island,
Hawaii, January 5-8, 2004. Los Alamitos, CA: IEEE Computer So-
ciety Press, 2004.

56 CMU/SEI-2005-TR-015



[Prowell 99] Prowell, S.; Trammell, C.; Linger, R.; & Poore, J. Cleanroom Soft-
ware Engineering: Technology and Practice. Reading, MA: Addi-
son Wesley, 1999.

[Rajlich 02] Rajlich, V. & Wilde, N. "The Role of Concepts in Program Com-

prehension," 271-278. Proceedings of the 10th International Work-
shop on Program Comprehension (IWPC '02), Paris, France, June
27-29, 2002. Los Alamitos, CA: IEEE Computer Society Press,
2002.

[Storey 99] Storey, M. A. D.; Fracchia, F. D.; & Muller, H. A. "Cognitive De-
sign Elements to Support the Construction of a Mental Model Dur-
ing Software Exploration." The Journal of Systems and Software
44, 3 (January 1999): 171-185.

CMU/SEI-2005-TR-015 57



REPORT DOCUMENTATION PAGE FormBpprov.
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

(Leave Blank) July 2005 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Impact of Function Extraction Technology on Next-Generation F1 9628-00-C-0003
Software Engineering

6. AUTHOR(S)

Alan R. Hevner, Richard C. Linger, Rosann W. Collins, Mark G. Pleszkoch, Stacy J. Prowell, Gwendolyn H.
Walton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2005-TR-015
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

HQ ESC/XPK REPORT NUMBER

5 Eglin Street ESC-TR-2005-015
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTR[BUTIONAVAILABILITY STATEMENT 12B DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS 76

13. ABSTRACT (MAXIMUM 200 WORDS)

Currently, software engineers lack practical means to determine the full functional behavior
of complex programs. This gap in intellectual control is the source of many long-standing
and intractable problems in security, software, and systems engineering. Function Extraction
(FX) technology is directed to automated computation of full program behavior. FX is based
on function-theoretic mathematical foundations of software that illuminate algorithmic meth-
ods for behavior computation. FX holds promise to replace resource-intensive, error-prone
analysis of program behavior in human time scale with fast and correct analysis in computer
time scale. The CERT® organization of the Software Engineering Institute is conducting re-
search and development in FX technology and is developing a Function Extraction for Mali-
cious Code system to rapidly determine the behavior of malicious code expressed in Assem-
bler Language. FX technology has the potential for transformational impact across the
software engineering life cycle, from specification and design to implementation, testing, and
evolution. This study investigates these impacts and, based on a survey of software profes-
sionals, defines a strategy for FX evolution that addresses high-leverage opportunities first.
FX is an initial step in developing next-generation software engineering as a computational
discipline.
14. SUBJECT TERMS 15. NUMBER OF PAGES

computational software engineering, function extraction, FX, function 70
extraction for malicious code, FX/MC, independent research and de-
velopment, next-generation software engineering

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRACT

OF REPORT THIS PAGE ABSTRACT U L
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-891 Prescribed bv ANSI Std. Z39-18 298-102


